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Abstract-Geological objects that do not deform homogeneously with their matrix can be considered as inclusions 
with viscosity contrast. Such inclusions are generally treated as initially spherical or ellipsoidal. Theory shows that 
ellipsoidal inclusions deform homogeneously, so they maintain an ellipsoidal shape, regardless of the viscosity 
difference. However, non-ellipsoidal inclusions deform inhomogeneously, so will become irregular in shape. 
Geological objects such as porphyroblasts, porphyroclasts and sedimentary clasts are likely to be of this kind, with 
initially rectilinear, prismatic or superelliptical section shapes. 

We present two-dimensional finite-element models of deformed square inclusions, in pure shear (parallel or 
diagonal to the square), as a preliminary investigation of the deformation of non-ellipsoidal inclusions with 
viscosity contrast. Competent inclusions develop marked barrel shapes with horn-like corners, as described for 
natural ductile boudins, or slightly wavy rhombs. Incompetent inclusions develop ‘dumb-bell’ or bone shapes, with 
a surprising degree of bulging of the shortened edges, or rhomb to sheath shapes. The results lead to speculation for 
inclusions in the circle to square shape range, and for asymmetric orientations. Anticipated shapes range from 
asymmetric barrels, lemons or flags for competent inclusions, to ribbon or fish shapes for incompetent inclusions. 
We conclude that shapes of inclusions and clasts provide an important new type of strain marker and competence 
criterion. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

The success of measuring strain in rocks depends on 
finding useful strain markers. This contribution 
addresses the question of strain markers that do not 
deform homogeneously with their matrix, such as varied 
clasts in a deformed conglomerate. Traditional theory 
treats such strain markers as spherical or ellipsoidal 
inclusions, but it may not be appropriate to approximate 
them as such. We present a preliminary study of the 
deformation of non-ellipsoidal inclusions, using finite- 
element models of deformed square inclusions, with 
different viscosity from the matrix. These results, 
together with predictions for other classes of inclusion 
shape, provide new criteria for estimating strain and 
viscosity contrasts in rocks. 

THEORY FOR DEFORMED ELLIPSOIDAL 
INCLUSIONS 

A considerable body of work exists, in the geological 
and material sciences literature, for the theory of 
deformation of an inclusion different from its matrix 

(Eshelby 1957, Gay 1968a,b, 1976, Bilby et al. 1975, Bilby 
& Kolbuszewski 1977, Lisle et al. 1983, Lisle 1985, 
Freeman 1987). These studies demonstrate, for New- 
tonian materials, that an isolated ellipsoidal inclusion in 
cohesive contact will deform homogeneously, but by a 
different strain from the bulk strain (i.e. far-field strain in 
the matrix), if there is a viscosity contrast. Experiments 
(Gay 1968a) and finite-element models (Shimamoto 
1975) verify the theory, and indicate that inclusions 
whose centres are spaced more than twice their diameters 
apart will not influence each other, so may in practice be 
considered as isolated. 

Much of the work cited above concerns pure shear of 
isolated elliptical cylinders, which in two dimensions is 
the deformation of elliptical inclusions. Bilby et al. (1975) 
presented an algebraic solution (slightly different from 
that of Gay 1968a) for initially circular inclusions in pure 
shear, which will be rewritten here in the nomenclature 
used for R~/I$ analysis (Lisle 1985 and references therein): 

lnR, = 1nRr + {(m - l)(Rr - I)/(Rf + l)]. (1) 

R, is the bulk strain ratio, Rf is the final inclusion axial 
ratio, which in this case is the inclusion strain ratio, and m 
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Fig. 1 (a) Graphical represention of equation (1). after Gay (1976). (fig. . ^ I, after Bilby et al. 1975). Numbers on the curves give viscosity ratio, M. 
The dashed ordinate line for R, = 4 (50% shortening) provides the data 
for the ellipses in (b), initially circular, with viscosity ratio numbered, 

and the bulk strain ellipse shaded. 

is the (Newtonian) viscosity ratio (inclusion/matrix). 
Figure l(a) represents this equation graphically, and 
Fig. l(b) gives final shapes for 50% bulk shortening 
(R, = 4) and different viscosity ratios. For m > 10, inclu- 
sion strain will be small, and the inclusion may be 
considered as nearly rigid (m = 00). At the other extreme, 
the m = 0 curve, representing a fluid-filled hole (Bilby 
et al. 1976), is the maximum possible inclusion deforma- 
tion: not an infinite strain, as might be expected, but 
Rf/R, < 2.7 (for R, < co). This limiting value provides a 
useful ‘rule-of-thumb’ for determining bulk strain from 
the most incompetent of deformed strain markers. 

An explicit expression like equation (1) cannot be 
written for initially elliptical inclusions, but Lisle (1985, 
chapter 7) presents sets of R~/I$ graphs which allow 
deformed shapes of inclusions of different initial axial 
ratios, orientations and viscosity ratios to be determined. 
Alternatively, Fig. l(a) can be used for initial elliptical 
inclusions aligned parallel to principal bulk stretch. For 
example (see dashed triangle, Fig. la), an ‘initial ellipse’ 
with Ri = 2, on the m = 2 curve deforms by a bulk strain 
of R, = 2 (abscissa distance) to the final inclusion axial 
ratio, Rf z 3.3. The deformation paths in Fig. l(a) are 
only slightly non-linear, so it may be deduced that the 
original or developing ellipticity has only a slight 
influence on the increment of inclusion deformation. 

Gay (1968b), Gay & Fripp (1976) and Lisle et al. (1983) 
apply two-dimensional inclusion theory to naturally 
deformed rocks, such as conglomerates. All assume that 

the inclusions were initially circular or elliptical in 
section. These studies deduced only small viscosity 
ratios between pebbles and matrix, for various rock and 
mineral types (less than lO:l), which is lower than is 
generally inferred from analyses of single-layer folds (e.g. 
Sherwin & Chapple 1968). 

Rules for ellipsoids and non-ellipsoids 

The theory of deformable inclusions, outlined above, is 
principally concerned with ellipsoidal inclusions. Eshelby 
(1957) demonstrated that an isolated ellipsoidal inclusion 
in material contrast with its matrix deforms in uniform 
strain, and so an ellipsoidal inclusion shape is main- 
tained. However, he also considered non-ellipsoidal 
inclusions, and showed that non-ellipsoidal inclusions 
deform by inhomogeneous strain. It follows that the 
inclusion shape will become irregular. This result has 
potential importance for geological strain markers. It 
means that any non-spherical or non-ellipsoidal inclusion 
(with a viscosity contrast) should not be considered as a 
homogeneously strained marker, and cannot be repre- 
sented by a single strain ellipsoid. Such inclusions must 
change their geometrical form during deformation, so a 
cube will not deform to a cuboid, and a prismatic 
inclusion not retain its straight edges. The shape change 
will be driven by the type of heterogeneous strain, and 
irregularities will amplify or diminish. 

A full examination of the deformation of inclusions of 
various initial shapes, and for different types of deforma- 
tion, is the subject of our ongoing research. Before 
presenting some preliminary modelling, we briefly discuss 
the possible range of initial shapes of geological inclu- 
sions and clasts. 

GEOLOGICAL INCLUSIONS: SHAPES OF 
CLASTS AND GRAINS 

There are many types of geological object that might be 
considered as inclusions, ranging from volcanic clasts, 
concretions and fossils to large crystals, grains and 
pebbles. We concentrate on the latter set, in this study. 
According to recent analyses of clast shape (e.g. Diepen- 
broek et al. 1992, and references therein), it is generally 
assumed that the ‘ultimate shape’ of a sedimentary 
particle subjected to prolonged ‘rounding’ is an ellipsoid. 
This ideal seems to apply to all sedimentary clasts, from 
sand or silt size to pebbles and cobbles. However, Fourier 
analysis of shapes of 25-50 mm fluvial and coastal clasts 
from Calabria, Italy (Diepenbroek et al. 1992) does not 
indicate perfect rounding to an ellipsoidal form, despite a 
crude axial symmetry (axial ratios 1: 1: 1.36). 

Lisle (1988) set out to test the ‘ellipsoid assumption’ on 
round beach pebbles from Gower, Wales. He concluded 
that the ‘average pebble’ shape was superelliptical in 
cross-section, and in three dimensions, an oblate ‘super- 
ellipsoid of revolution’. Following Lisle (1988) (see Fig. 
2), the superellipse to subellipse geometry is described in 
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Fig. 2. The description of Lisle (1988) of subellipse to superellipse 
geometry, described in Cartesian coordinates by (x / a)P + (_v / b)P = 1. 
x is parallel to the a diameter, p is parallel to the b diameter. Numbers 

are p values. See text and equation (2). 

Cartesian coordinates by: 

(X/U)P + (_v/b)p = 1. (2) 

For p = 2, this becomes the equation for an ellipse with 
axial ratio u/b. Subellipses have p c 2, and superellipses p 
> 2. Lisle’s ‘average pebble shape’ had p = 2.6 and axial 
ratio 2.7. These data would appear contradictory to the 
statement by Burns & Spry (1969) that most deformed 
pebbles (in conglomerates) have nearly ellipsoidal 
shapes. However, our modelling may provide reasons 
for the apparent contradiction. 

The shapes of porphyroblasts and porphyroclasts 
deserve mention, because of their use and potential as 
deformation markers. Porphyroclast structures such as 
‘tails’ and ‘wings’ are widely used as ‘shear criteria’ 
(Simpson and Schmid 1983, Passchier & Simpson 1986, 
Hanmer & Passchier 1991), and the symmetry used to 
distinguish coaxial from non-coaxial deformation 
(Choukroune et al. 1987). Feldspar porphyroclasts with 
0 or 6 ‘wings’ have been modelled as spherical objects 
with a rigid core and soft outer shell (Passchier & 
Sokoutis 1993). However, many illustrated examples of 
mantle-clast structures (e.g. Hanmer & Passchier 1991, 
figs. 46,47 and 50) appear to show evidence for clasts far 
more rectilinear than circular. We suggest that cubic, 
cuboidal and prismatic shapes may be more appropriate 
than spheres or ellipsoids, for general modelling of 
porphyroblasts and porphyroclasts. 

A study of the deformation of initially square- 
sectioned inclusions of different viscosity ratio can there- 
fore serve a dual purpose: (1) to indicate expected 
deformed shapes for square or rectangular inclusions, 
such as porphyroclasts; and (2) combined with evidence 
for ellipses, to indicate deformation of intermediate 
forms, such as subelliptical and superelliptical inclusions, 
relevant to sedimentary clasts. 

MODELLING THE DEFORMATION OF SQUARE 
INCLUSIONS 

Evidence from boudins 

Boudin shapes provide important data on the defor- 
mation of stiff rectilinear geological inclusions. The 
progressive development of barrel-shaped and eventually 
fish mouth-shaped boudins has long been described from 
rocks, and in theory and experiments (Ramberg 1955, 
P ,8:9-E 

Ramsay 1967, p. 106, Stromgird 1973). The experimental 
results of Ghosh & Ramberg (1976), (figs. 34-41), and the 
finite-element simulations of Lloyd & Ferguson (1981) 
indicate that the process of ‘comer deformation’ occurs 
also in single inclusions of initial rectangular form. 
However, the extreme barrelled and hooked form 
modelled by Lloyd & Ferguson (1981) depended on 
plastic deformation, and less extreme shapes might be 
expected for Newtonian models. 

What, then, might be expected for a rectilinear 
inclusion that is less viscous than the matrix? Logically, 
an ‘antibarrel’ shape might be anticipated, with an 
opposite type of corner effect from those seen in 
competent boudins. Lisle (1973, fig. 71) illustrated this 
effect schematically, as an ‘axe-head’ type of shape. We 
now present some finite-element models to explore these 
possible shape changes more exactly. 

Finite-element modelling of square inclusions in pure shear 

A two-dimensional finite-element code that treats the 
case of plane-strain steady-state flow in incompressible 
fluids (Lan & Hudleston 1991) is used in this study. The 
finite-element model consists of a central square inclu- 
sion, aligned either with the coordinate frame or 
diagonally, and a surrounding matrix. Both the inclusion 
and matrix are treated as Newtonian fluids, with viscosity 
ratio, m. The model is divided into 760-780 triangular 
and quadrilateral elements. Symmetry of the structure 
has been used to reduce the number of elements needed 
for the computations. All models are deformed to 50% 
shortening (i.e. R, = 4, in equation 1, and Fig. 1). 

Figure 3 presents the deformed inclusion shapes, for a 
range of viscosity ratios. The central shaded rectangle 
and rhomb are the expected shapes for homogeneous 
deformation, where there is no viscosity contrast (m = 1). 
In cases with viscosity contrast, there are two concurrent 
processes causing the shape changes. (1) The overall 
dimensions of the inclusions change, according to the 
viscosity contrast, with the least deformation at the 
highest m. The shapes change irregularly, according to 
the degree of heterogeneous deformation; for example, as 
seen by ‘corner deformations’. There appear to be critical 
values of m, for both competent and incompetent 
inclusions, where these heterogeneous effects are max- 
imum. 

Competent inclusions aligned with the coordinate 
frame (Fig. 3a, m > 1) show varying degrees of barrelling 
and pulled-out corners, as described for some boudins. 
However, the same competent inclusions, but in diagonal 
orientation (Fig. 3b), only slightly deviate from rhomb 
towards lemon shapes. For both orientations, the 
maximum shape irregularity appears close to m = 5. 

Incompetent inclusions (Fig. 3, m < 1) provide some 
surprising results. It was already noted in the discussion 
of circular inclusions that there is a theoretical ‘upper 
limit’ of deformation form +O, only a few factors greater 
than the bulk deformation. This is also true for the square 
inclusion models, shown by the narrow range of inclusion 
lengths between m = 1 and m = 0.01, for both 
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Fig. 3. Finite-element models of 50% pure shear of (a) initially square and (b) diagonal-square inclusions, with inclusion: 
matrix viscosity ratio (m) labelled. The central shaded rectangle and rhomb indicate the bulk deformation, or the shape for 
m = 1. Note the strong shape changes from barrel to bone shapes in (a), compared to smaller variations from rhombs in (b). 

orientations. Incompetent inclusions aligned with the 
coordinate frame (Fig. 3a) show bone to dumb-bell 
shapes, with a surprisingly large degree of outward 
bulging at the tips. The most extreme effect, at m = 
0.01, appears rather like a long double droplet. How 
many readers, confronted with this this curvaceous 
shape, would realise that it had once been square? The 
lobate ends might be particularly surprising, in view of 
the opposite sense of lobing seen in mullions which 
develop as a result of mechanical instabilities on planar 
viscosity boundaries (Ramsay 1967, p. 383, Sokoutis 
1987). In comparison with these extreme shape changes, 
the incompetent diagonal inclusions (Fig. 3b) deform to 
only slightly irregular sheath-like rhombs, with a max- 
imum shape effect seen at about m = 0.1. 

These results suggest that a whole variety of shapes 
could arise from the deformation of initially square 
inclusions which are asymmetrically oriented with 
respect to pure shear; or in simple shear. For competent 
inclusions, we anticipate asymmetric barrel or flag 
shapes: for incompetent, ribbons or fish shapes. 

DEFORMATION OF INCLUSIONS IN THE 
CIRCLE TO SQUARE RANGE 

By combining the results in Fig. 3 with those for 
circular inclusions (Fig. l), we can make some predictions 

for the deformation of inclusions in the circle to square 
range, for examples of m = 5 and 0.2, and 50% 
shortening (Fig. 4). Selected shapes for (1) a subellipse 
and (2) a superellipse are given (Fig. 4, right sides), 
recalling that the latter have been proposed as a likely 
shape of sedimentary clasts. For an equant shape, where 
a = b, equation (2) now becomes: 

xp+vp = rp, (3) 

with r the initial equant dimension. Our examples in Fig. 
4 take p = 1.5 for the subellipse or ‘subcircle’ (curve l), 
and p = 3 for the superellipse or ‘supercircle’ (curve 2). 

It must first be noted that the deformed lengths on the 
symmetry axes are different for the circular, rhomb and 
square inclusions. The difference is slight for the 
competent inclusions (Fig. 4b), but for the incompetent 
example (Fig. 4c), the ellipse is measurably longer than 
the ‘bone’ and ‘rhomb’. We expect the deformed shape 
for the ‘subcircle’ (curve 1) to fall in the field between the 
near-rhomb and the ellipse, and the ‘supercircle’ (curve 2) 
to fall between the ellipse and the ‘barrel’ for m = 5, and 
the ellipse and the ‘bone’, for m = 0.2 (Fig. 4, right). The 
exact shapes drawn are speculative, but closely controlled 
by the exact modelling (Fig. 4, left). 

This qualitative modelling suggests that a competent 
subcircular inclusion might deform nearly to a subellipse, 
whereas a competent supercircle might become a more 
irregular ‘square ellipse’. For increasing m, the effect will 
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a) 
strain than the matrix, but may increase their shape 
irregularity. In contrast, incompetent inclusions will 
deform rather more than the matrix, and we suggest 
these will become more curved in shape, perhaps 
indistinguishable from elliptical if deformation is suffi- 
ciently strong. Continued work will model strain and 
shape changes for a wide variety of initial inclusion 
shapes in progressive deformation, and comparing New- 
tonian and non-Newtonian rheologies. 

t-4 m=5 d m = 0.2 

Fig. 4. Compilation with speculations for deformation of inclusions in 
the circle to square shape range. (a) Initial shapes; (b) m = 5; (c) m = 
0.2. The iefr sides combine information from Figs. 1 and 3, for circles 
(shaded) and squares (outlines). The right sides-are examples of (1) a 
subellipse/subcircle (inner shading), and (2) a superellipse/supercircle 

(outer shading). See text for discussion. 

be less noticeable as the inclusions will be hardly 
deformed. For incompetent subcircles, the deformed 
shapes may not be significantly different from an extreme 
a:b subellipse, whereas the incompetent supercircle will be 
an almost straight-sided ribbon shape. With sufficient 
bulk deformation, and given the rounded ends produced 
even for the initial square shape, it seems likely that these 
shapes of incompetent inclusions would be interpreted, by 
eye, as elongate ellipses. 

GEOLOGICAL APPLICATIONS 

Deformed inclusion shapes as a competence criterion 

Distinctly different shapes are produced in our models 
of deformed square inclusions, according to viscosity 
ratio and orientation. These initial results suggest that 
competent inclusions of varied shape will show a lower 

Implications for clasts, tails and Bsh’ 

Tear-drop or lemon-shaped quartz clasts are a 
common feature of deformed rocks. From the theory 
and modelling in this paper, any non-elliptical deformed 
inclusion must either have been initially non-elliptical, or 
have resulted from a process which contravened ‘isolated 
inclusion’ theory (e.g. interference of adjacent objects, 
non-isotropic rheology, non-Newtonian flow, etc.). 
While several of these reasons may be applicable to 
rocks, where a sigmoidal or tear-drop-shaped clast (e.g. 
of quartz) is observed in isolation, it might be reasonable 
to attribute its shape to deformation of an inclusion of 
originally non-elliptical form. ‘Quartz ribbons’ in mylo- 
nites could provide evidence that the quartz, here, 
behaved as incompetent inclusions. 

Porphyroclast ‘tails’ and related ‘rolling structures’ 
(Passchier & Simpson 1986, Van den Driessche & Brun 
1987) are commonly used as sense-of-shear indicators in 
shear zones. The ‘pulling out’ of corners in the deformed 
square inclusions (e.g. Fig. 3, m = 5) would appear to 
provide a mechanisms for initiating wings or tails from 
rectilinear clasts, as implied in the model of Mawer (1987, 
fig. 7). Whether a large enough simple shear can produce 
significant tails and ‘rolling structures’ in isotropic linear 
viscous inclusion/matrix systems remains to be tested in 
further modelling. 
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